
[Hooda, 4(8): August, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [25]

IJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH -

TECHNOLOGY

DNS SECURITY : A REVIEW
Darshana Hooda*, Sushma

*Computer Centre, DCRUST,Murthal, Haryana,India
 Department of CS, Banasthali Vidyapeeth,Rajsthan, India

ABSTRACT
DNS is the basic method which allows a domain name to lead customers to your website as they attempt to log onto

your site. DNS has been extended to provide security services (DNSSEC) mainly through public-key cryptography.

This is a review paper on the security problems affecting the Domain Name System. Corrupting the operation of

DNS in this way can lead to many kinds of fraud and other malicious activity. By plugging some of the largest

security holes in the Internet, DNSSEC has the potential to significantly expand the trustworthiness and thus the

usefulness of the Internet as a whole.

KEYWORDS: DNS, DNSSEC, Security Vulnerability.

 INTRODUCTION
Internet-connected devices are identified by IP

addresses, though users typically only know web

addresses—people can remember “example.edu,” for

instance, more easily than “192.168.7.13.” The

Domain Name System (DNS) uses a distributed

network of name servers to translate text-based web

addresses into IP addresses, directing Internet traffic

to proper servers. The Internet doesn't work without

the DNS. Unfortunately when the DNS was

developed in 1983, security controls weren't built in

and over the years, serious security flaws have been

discovered resulting in numerous changes. Most

recently, researcher Dan Kaminsky discovered a

major flaw in the DNS that allowed cache-poisoning

attacks, which essentially deceives a DNS server into

believing it has received legitimate data when it may

actually be fraudulent. One of the biggest changes to

the DNS is DNSSEC, which adds security controls to

the original protocol. Specifically the DNSSEC

provides additional extensions to the original DNS

protocol that allows for origin authentication of the

DNS data, data integrity and authenticated denial of

existence. In simple terms, the DNSSEC thwarts

spoofing attacks by allowing websites to validate

domain names and the associated IP addresses using

digital signatures and public-key encryption. This

mitigates the threat of bad guys hijacking your Web

traffic and redirecting it to fake sites to carry out their

dastardly deeds. Citizens and other users of

government website services would rightfully

consider this unacceptable. DNS Security Extensions

(DNSSEC) adds security provisions to DNS so that

computers can verify that they have been directed to

proper servers. DNSSEC authenticates lookups of

DNS data. An attacker who is able to send DNS

responses to a vulnerable system could cause a denial

of service, crashing the application that made calls to

a vulnerable resolver library. It does not appear that

this vulnerability can be leveraged to execute

arbitrary code. There may be some risk of

information disclosure if a vulnerable system returns

thecontents of memory adjacent to a DNS response.

Today’s complex networks must deliver the utmost

security and reliability to protect against potential

security threats.

BACKGROUND
Some of the important elements involved in the

domain name resolution process are the following:

• Stub resolver: The originator of a DNS

query. This could be a simple client machine or a

web browser.

•Recursive DNS (RDNS): This is a server machine

that is responsible to assist the stub resolver on

resolving a domain name. These servers maintain a

local cache of past resolved domain names for a

certain period of time (equal to the domain name’s

time to live (TTL)), and are the main target of cache

poisoning attacks.

•Root and Top Level Domain (TLD) servers: These

are servers that provide referrals to the TLDs and

Start of Authority servers respectively.

•Start of Authority (SOA): The SOA server(s)

represent the authoritative name server for an entire

name zone. In the majority of the cases once a query

reaches the appropriate SOA server, the SOA will be

http://www.ijesrt.com/

[Hooda, 4(8): August, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [26]

able to provide an domain name to IP address

mapping or a NXDOMAIN (or NX, for brevity) if

that domain does not exist.

In Figure 1 we can see the entire resolution process

for a recursive query from the stub resolver to the

SOA. Assume the stub issues a query in order to

resolve example.com (step 1). The query will reach

the local RDNS. Assuming the domain name is not

located in the cache of the RDNS server, the RDNS

will initiate an iterative query process in order to

retrieve the mapping between the domain name

example.com and its IP address.

Fig.1: A common DNS query resolution process[4]

In the next step (step 2) the RDNS will contact the

root servers asking for example.com. The root servers

have no knowledge of the IP address of the queried

domain. The only thing they can provide is a referral

(step 3) to the .com TLD servers. The RDNS will

then ask the .com TLD servers (step 4) for the IP of

example.com, and the TLD will response with a

referral to the SOA forthe queried domain (step 5).

By contacting the SOA (steps 6 and 7) the RDNS

will finally get the A record containing the IP address

for example.com. At this point the RDNS will

forward the answer to the stub resolver (step 8) [4].

DNS- INTRODUCTION
The Internet and TCP/IP, IP addresses are used to

route packets from source to destination. A single IP

address, for example 203.192.135.234, is not difficult

to remember. But trying to learn or track thousands

of these addresses, including which server/node is

associated with each address, is a daunting task. So

instead, the client uses domain names to refer to

systems with which client wants to communicate [5].

Domain Name System (or Service or Server) an

internet service that translates domain names into IP

addresses. Because domain names are alphabetic,

they're easier to remember. The Internet however, is

really based on IP addresses [1]. Because maintaining

a central list of domain name/IP address

correspondences would be impractical, the lists of

domain names and IP addresses are distributed

throughout the Internet in a hierarchy of authority

[2].The Domain Name System is a standard

technology for managing the names of Web sites and

other Internet domains. DNS technology allows you

to type names into your Web browser like

compnetworking.about.com and your computer to

automatically find that address on the Internet. A key

element of the DNS is a worldwide collection of

DNS servers [3]. The DNS system is, in fact, its own

network. If one DNS server doesn't know how to

translate a particular domain name, it asks another

one, and so on, until the correct IP address is returned

[1].

DNS- WORKING
The process of retrieving data from DNS is called

name resolution or simply resolution. There are two

modes of resolution in DNS: iterative and recursive.

In the iterative mode,

when a name server receives a query for which it

does not know the answer, the server will refer the

querier to other servers that are more likely to know

the answer. Each server is initialized with the

addresses of some authoritative servers of the root

zone. Moreover, the root servers know the

authoritative servers of the second-level domains

(e.g., edu domain). Second-level servers know the

authoritative servers of third-level domains, and so

on. Thus by following the tree structure, the querier

can get closer to the answer after each referral. When

a root server receives an iterative query for the

domain name, it refers the querier to the edu servers.

The querier will locate the authoritative servers and

obtain the IP address. In the recursive mode, a server

either answers the query or finds out the answer by

contacting other servers itself and then returns the

answer to the queries.

Internet is an IP network. Every host is affected an IP

address that must be known to any other host willing

to communicate. It would be possible to create the

mappings between IP addresses and names locally to

each computer. DNS provides a way to know the IP

address of any host on the Internet [13].

Reference 1 provides more detailed information of

the basics of DNS [13].

DOMAIN NAME SYSTEM SECURITY

EXTENSION(DNSSEC)
The Domain Name System Security Extensions

(DNSSEC) adds data origin authentication and data

integrity to the Domain Name System. The security

extensions consist of a set of new resource record

types and modifications to the existing DNS protocol.

The DNS security extensions provide origin

authentication and integrity protection for DNS data,

http://www.ijesrt.com/

[Hooda, 4(8): August, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [27]

as well as a means of public key distribution. These

extensions do not provide confidentiality [1].

Authentication Chain: An alternating sequence of

DNS public key (DNSKEY) RRsets and Delegation

Signer (DS) RRsets forms a chain of signed data,

with each link in the chain vouching for the next. A

DNSKEY RR is used to verify the signature covering

a DS RR and allows the DS RR to be authenticated.

The DS RR contains a hash of another DNSKEY RR

and this new DNSKEY RR is authenticated by

matching the hash in the DS RR. This new DNSKEY

RR in turn authenticates another DNSKEY RRset

and, in turn, some DNSKEY RR in this set may be

used to authenticate another DS RR, and so forth

until the chain finally ends with a DNSKEY RR

whose corresponding private key signs the desired

DNS data.

Authentication Key: A public key that a security-

aware resolver has verified and can therefore use to

authenticate data. A security-aware resolver can

obtain authentication keys in

three ways. (i) The resolver is generally configured to

know about at least one public key; this configured

data is usually either the public key itself or a hash of

the public key as found in the DS RR (see "trust

anchor"). (ii) The resolver may use an authenticated

public key to verify a DS RR and the DNSKEY RR

to which the DS RR refers. (iii) The resolver may be

able to determine that a new public key has been

signed by the private key corresponding to another

public key that the resolver has verified. Note that the

resolver must always be guided by local policy when

deciding whether to authenticate a new public key,

even if the local policy is simply to authenticate any

new public key for which the resolver is able verify

the signature.

Authoritative RRset: Within the context of a

particular zone, an RRset is "authoritative" if and

only if the owner name of the RRset lies within the

subset of the name space that is at or below the zone

apex and at or above the cuts that separate the zone

from its children, if any. All RRsets at the zone apex

are authoritative, except for certain RRsets at this

domain name that, if present, belong to this zone's

parent.

Non-Validating Security-Aware Stub Resolver: A

security-aware stub resolver that trusts one or more

security-aware recursive name servers to perform

most of the tasks discussed in this document set on its

behalf. In particular, a non-validating security-aware

stub resolver is an entity that sends DNS queries,

receives DNS responses, and is capable of

establishing an appropriately secured channel to a

security-aware recursive name server that will

provide these services on behalf of the security-aware

stub resolver.

Security-aware stub resolver, validating security-

aware stub resolver Non-Validating Stub Resolver: A

less tedious term for a non-validating security-aware

stub resolver. Security-Aware Name Server: Entity

acting in the role of a name server that understands

the DNS security extensions defined in this document

set. In particular, a security-aware name server is an

entity that receives DNS queries, sends DNS

responses, supports the EDNS0 message size

extension and the DO bit and supports the RR types

and message header bits defined in this document set.

Security-Aware Recursive Name Server: An entity

that acts in both the security-aware name server and

security-aware resolver roles.A more cumbersome

but equivalent phrase would be "a security-aware

name server that offers recursive service".

Security-Aware Resolver: Entity acting in the role of

a resolver that understands the DNS security

extensions defined in this document set. In particular,

a security-aware resolver is an entity that sends DNS

queries, receives DNS responses, supports the

EDNS0 message size extension and the DO bit and is

capable of using the RR types and message header

bits defined in this document set to provide DNSSEC

services.

Security-Aware Stub Resolver: entity acting in the

role of a stub resolver that has enough of an

understanding the DNS security extensions defined in

this document set to provide additional services not

available from a security-oblivious stub resolver.

Security-aware stub resolvers may be either

"validating" or "non-validating", depending on

whether the stub resolver attempts to verify DNSSEC

signatures on its own or trusts a friendly security-

aware name server to do so [7].

SECURITY VULNERABILITY TO DNS
It is known the fact that DNS is weak in several

places. Using the Domain Name System we face the

major problem of DNS amplification, DNS cache

poisoning and DNS spoofing and some other problem

Misdirected Destination: Trusting Faked Information

, Name Based Authentication/Authorization . DNS

protocol attacks are based on flaws in the DNS

protocol Implementation. In order to be able to assess

the potential threats and the possible counter-

measures it is first and foremost necessary to

understand the normal data flows in a DNS system.

Diagram

(1) The primary source of Zone data is normally

the Zone Files (and don't forget the named.conf file

which contains lots of interesting data as well). This

data should be secured and securely backed up. This

http://www.ijesrt.com/

[Hooda, 4(8): August, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [28]

threat is classified as Local and is typically handled

by good system administration.

(2) If you run slave servers you will do zone

transfers. Note: You do NOT have to run with slave

servers, you can run with multiple masters and

eliminate the transfer threat entirely. This is classified

as a Server-Server (Transaction) threat.

(3) The BIND default is to deny Dynamic Zone

Updates. If you have enabled this service or require

to it poses a serious threat to the integrity of your

Zone files and should be protected. This is classified

as a Server-Server (Transaction) threat.

(4) The possibility of Remote Cache Poisoning due to

IP spoofing, data interception and other hacks is a

judgment call if you are running a simple web site. If

the site is high profile, open to competitive threat or

is a high revenue earner you have probably

implemented solutions already. This is classified as a

Server-Client threat.

(5) We understand that certain groups are already

looking at the implications for secure Resolvers but

as of early 2004 this was not standardized. This is

classified as a Server-Client threat.

DNS AMPLIFICATION
Several attackers massively exploited recursive name

servers to amplify DDoS(Distributed Denial of

Service) attacks against several networks utilizing IP

spoofing. The DNS uses a tree-like system of

delegations. Recursion is the process of following the

chain of delegations, starting at the Root zone, and

ending up at the domain name requested by a user. A

recursive name server may need to contact multiple

authoritative name servers to resolve given name on

behalf of the requestor. A recursive name server

should only accept queries from a local, or authorized

clients. Unfortunately, many recursive name servers

accept DNS queries from any source. Furthermore,

many DNS implementations enable recursion by

default, even when the name server is intended to

only serve authoritative data. We say that a name

server is an "open resolver DDoS attacks using

recursive name servers can create an amplification

effect similar to the now-aged Smurf attack (A

SMURF attack (named after the program used to

perform the attack) is a method by which an attacker

can send a moderate amount of traffic and cause a

virtual explosion of traffic at the intended target).

The Smurf attack works by sending an ICMP Echo

request (type 8, a ping) to broadcast addresses on

affected networks. These receiving hosts in turn relay

the request and a reply to the spoofed location are

initiated. In the Smurf effect, on a multi-access

broadcast network, one can expect every single ping

to result in attack amplification by triggering replies

from all the active computers on the amplification

subnet. The amplification effect in a recursive DNS

attack is based on the fact that small queries can

generate larger UDP packets in response. In the

initial DNS specification, UDP packets were limited

to 512 bytes.

New RFC specifications, - in support of IPv6,

DNSSEC, NAPTR and other extensions to the DNS

system, - require name servers to return much larger

responses to queries. This increased UDP payload

capability is now being used to launch attacks with

higher UDP response amplifications. The

amplification of a standard Smurf attack relies on

sending a packet to a broadcast address which then

causes multiple systems to respond to a victim, DNS

amplification occurs due to the response packet being

significantly larger than that of the query [8].

The addendum to this paper contains a detailed

description of three of these attacks. DNS

Amplification Attacks by Randal Vaughn and Gadi

Evron, March 17, 2006[8].

DNS CACHE POISONING
DNS cache poisoning is a serious threat to today’s

Internet. DNS cache poisoning results in a DNS

resolver storing (i.e., caching) invalid or malicious

mappings between symbolic names and IP addresses.

Because the process of resolving is a name depends

on authoritative servers located elsewhere on the

Internet. An attacker may poison the cache by

compromising an authoritative DNS server or by

forging a response to a recursive DNS query sent by

a resolver to an authoritative server [9]. When you

type a URL into your browser, a DNS resolver

checks the Internet for the proper name/number

translation and location. DNS will accept the first

response or answer without question and send you to

that site. It will also cache that information for a

period of time until it expires, so upon the next

request for that name/number, the site is immediately

delivered. DNS won’t need to query the Internet

again and uses that address until that entry expires.

Since users assume they are getting the correct

information, it can get ugly when a malicious system

responds to the DNS query first with modified, false

information, as it does with DNS cache poisoning.

The DNS servers first send the user to the bad link

but also cache that fake address until it expires. Not

only does that single computer get sent to the wrong

place, but if the malicious server is answering for a

service provider, then thousands of users can get sent

to a rogue system. This can last for hours to days,

depending on how long the server stores the

information, and all the other DNS servers that

propagate the information can also be affected. The

http://www.ijesrt.com/

[Hooda, 4(8): August, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [29]

imminent dangers posed by a rogue site include

delivering malware, committing fraud, and stealing

personal or sensitive information [11]. The nature of

DNS cache poisoning attacks and present a precise,

formal model of the bailiwick rule and the record

overwriting mechanism of modern DNS resolvers,

including BIND v9.4.1, unbound v1.3.4, and

MaraDNS v1.3.07.09.

Step 1: The resolver checks the resolver cache in the

workstation’s memory to see if it contains an entry

for Farpoint.companyA.com.

Step 2: Having found no entry in the resolver cache,

the resolver sends a resolution request to the internal

DNS server.

Step 3: When the DNS server receives the request, it

first checks to see if it’s authoritative. In this case, it

isn’t authoritative for companyA.com. The next

action it takes is to check its local cache to see if an

entry for Farpoint.companyA.com exists. It doesn’t.

So in Step 4 the internal DNS server begins the

process of iteratively querying external DNS servers

until it either resolves the domain name or it reaches

a point at which it’s clear that the domain name entry

doesn’t exist.

Step 4: A request is sent to one of the Internet root

servers. The root server returns the address of a

server authoritative for the .COM Internet space.

Step 5: A request is sent to the authoritative server

for .COM. The address of a DNS server authoritative

for the companyA.com domain is returned.

Step 6: A request is sent to the authoritative server

for companyA.com. This is identical to the standard

process for an iterative query – with one exception. A

cracker has decided to poison the internal DNS

server’s cache. In order to intercept a query and

return malicious information, the cracker must know

the transaction ID. Once the transaction ID is known,

the attacker’s DNS server can respond as the

authoritative server for companyA.com.

Although this would be a simple matter with older

DNS software (e.g. BIND 4 and earlier), newer DNS

systems have built-in safeguards. In our example, the

transaction ID used to identify each query instance is

randomized. But figuring out the transaction ID is not

impossible. All that’s required is time. To slow the

response of the real authoritative server, our cracker

uses a botnet (Botnets are groups of computers

connected to the Internet that have been taken over

by a hacker. The hacker controls all the computers

and they behave like a “robot network”) to initiate a

Denial of Service (DoS) attack. While the

authoritative server struggles to deal with the attack,

the attacker’s DNS server has time to determine the

transaction ID.

Once the ID is determined, a query response is sent to

the internal DNS server. But the IP address for

Farpoint.companyA.com in the response is actually

the IP address of the attacker’s site. The response is

placed into the server’s cache.

Step 7: The rogue IP address for Farpoint is returned

to the client resolver.

Step 8: An entry is made in the resolver cache, and a

session is initiated with the attacker’s site. At this

point, both the workstation’s cache and the internal

DNS server’s cache are poisoned. Any workstation

on the internal network requesting resolution of

Farpoint. companyA.com will receive the rogue

address listed in the internal DNS server’s cache.

This continues until the entry is deleted [10].

DNS SPOOFING
DNS spoofing is another one of the man-in-the-

middle attacks that can force victims to navigate onto

a fake website purporting as a real one. DNS

spoofing is based on the presentation of false or fake

DNS information to the victim in a response to their

DNS request and as a result forcing them to visit a

site which is not the real one. As an example,

suppose the user requests the IP address of

mail.yahoo.com which is supposed to be

XX.XX.XX.XX. But the attacker would respond to

the DNS query before the actual response arrives

with a spoofed address of YY.YY.YY.YY. The

user’s system will make a connection request to

YY.YY.YY.YY thinking that mail.yahoo.com is

located at that IP address. So effectively the user is

routed to a completely different site from the one

which he or she was originally destined to navigate.

Normal DNS communication occurs when the system

request from the IP of a particular website and the

DNS server responds back with the actual IP address

of the website. The system then connects to the

website through the IP address it received as a

response. With DNS spoofing, the attacker intercepts

the DNS request and sends out a response which

doesn’t contain the actual IP actual but a spoofed IP

address. This means that the rather than connecting to

the real website, the victim connects to a malicious

website which can cause harm.[14]

Detailed Description of Spoofing from RFC 5452 and

Bernhard muller, SEC Consult Vulnerability

Lab,Vienna(a pdf file) [12].

NAME BASED

AUTHENTICATION/AUTHORIZATION
Some applications, unfortunately spreader all over

the Internet, make use of an extremely insecure

mechanism: name based authentication/authorization.

It is the case, for example, of the UNIX “r-

http://www.ijesrt.com/

[Hooda, 4(8): August, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [30]

commands” such as rlogin, rsh or rcp that use the

concept of “remote equivalence” to allow the remote

access to a computer. In these networks, system

administrators or, even worse, users can declare the

remote equivalence of two accounts on two different

machines (e.g., by means of the files /etc/hosts.equiv

or .rhosts). This equivalence associates two users of

two different hosts simply on the basis of their

names. The access to a remote computer is then

granted if the remote user is declared equivalent to a

local user, and if the requesting hostname matches

the one contained in the equivalence definition. No

other authentication mechanisms are used, so we can

talk of name based (weak) authentication. As an

example, user joe can login as the user doe to the

computer host.mydomain.com from the computer

otherhost.mydomain.com if the file /etc/hosts.equiv

contains the equivalence between the local user doe

and the user joe@otherhost.mydomain.com. Remote

commands have been designed at the dawn of the

Internet for the use in trusted local network, where all

the users were known to the system administrator,

and the network was not connected to the big

Internet. Unfortunately, remote commands survived

to the Internet growth and they are still present and

used in many networks. If name based

authentication/authorization is used, it is possible to

access to a remote machine simply spoofing the name

of a host. Also, if the local network is protected by a

firewall, all the hosts that use name based

authentication/ authorization are at risk if an attacker

can get control of a single machine of the firewall-

protected network. The attacker can monitor network

traffic learning the equivalences used in that network,

and spoof the IP address of an equivalent host (e.g.,

performing a denial of service attack on that machine,

or simply waiting for the machine to shut-down).

Now, the attacker’s host is completely equivalent to

the spoofed host for all the computers using remote

equivalence.

MISDIRECTED DESTINATION:

TRUSTING FAKED INFORMATION
Suppose the following scenario: a user wants to

connect to host A by means of a telnet client. The

telnet client asks through a resolver the local name

server to resolve the name A into an IP address, it

receives a faked answer, and then initiates a TCP

connection to the telnet server on the machine A (so

it thinks). The user sends his login and password to

the fake address. Now, the connection drops and the

user retry the whole procedure this time to the correct

IP address of the host A. He might ignore what just

happened but the malicious attacker that spoofed the

name of the host A is now in control of his login and

password. This happened because the present routers

have no capacity to disallow packets with fake source

addresses. So, if the attacker can route packets to

someone, then he is capable of forging those packets

to look as if they come from a trustworthy host.

Therefore, in our case the attacker predicts the time

when a query will be sent and he starts to flood the

resolver with his fake answers. With a firewall for the

user’s network the resolver would not be reachable

from the outside world, but his local name server

would. So, if the local name server can be corrupted

in thesame manner as described above then the

attacker can redirect such application with vital

information towards hosts controlled by him and

capture this information. Following these

assumptions, we observe that in this case we have the

possibility of a Denial of Service (DoS) attack. In

case of such an attack, if the name server can be

spoofed and the attacker’s machine can impersonate

the true name server then it can maliciously provide

that certain names in the Domain does not exist.

Later on, we present a way in which such an attack is

annihilated in DNSSEC.

REFERENCES
1. http://www.webopedia.com/TERM/D/DNS.

html.

2. http://searchnetworking.techtarget.com/defin

ition/domain-name-system.

3. http://compnetworking.about.com/od/dns_d

omainnamesystem/f/ dns_servers.htm.

4. Roberto Perdisci, Manos Antonakakis, and

Wenke Lee, “Solving the DNS Cache

Poisoning Problem Without Changing the

Protocol”, May 16, 2008.

5. Tom Olzak, “DNS Cache Poisoning:

Definition and Prevention”, March 2006.

6. http://compsec101.antibozo.net/papers/dnsse

c/dnssec.html.

7. R.Arends,R.Austein and M.Larson ,“ DNS

Security Introduction and

Requirements”,RFC 4033,March 2005.

8. Randal Vaughn and Gadi Evron, “DNS

Amplification Attacks”,March 17, 2006.

9. Matsuzaki Yoshinobu, “DNS amplification

attacks”,April 25,2006.

10. Tom Olzak, “DNS Cache

Poisoning:Definition and Prevention”,March

2006.

11. Peter Silva (Technical Marketing Manager),

“DNSSEC: The Antidote to DNS Cache

Poisoning and Other DNS Attacks”,With

contributions from(Nathan Meyer, Product

Manager Michael Falkenrath, Senior Field

Systems Engineer).

http://www.ijesrt.com/

[Hooda, 4(8): August, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [31]

12. Bernhard muller,SEC Consult Vulnerability

Lab,Vienna,improved DNS Spoofing using

Node Re-Delegation,July 14,2008.

13. Stevens, Glenn. “The Domain Name

Service”. June 21, 1995. URL:

http://eeunix.ee.usm.maine.edu/guides/dns/d

ns.html

14. Http://www.securitysupervisor.com/security

-q-a/network-security/195-what-is-dns-

spoofing.

http://www.ijesrt.com/
http://eeunix.ee.usm.maine.edu/guides/dns/dns.html
http://eeunix.ee.usm.maine.edu/guides/dns/dns.html

